Iterative Solution Methods for Large Linear Discrete Ill-posed Problems

نویسندگان

  • D. Calvetti
  • L. Reichel
  • Q. Zhang
چکیده

This paper discusses iterative methods for the solution of very large severely ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The right-hand side vector represents the given data and is assumed to be contaminated by errors. Solution methods proposed in the literature employ some form of ltering to reduce the in uence of the error in the right-hand side on the computed approximate solution. The amount of ltering is determined by a parameter, often referred to as the regularization parameter. We discuss how the ltering a ects the computed approximate solution and consider the selection of regularization parameter. Methods in which a suitable value of the regularization parameter is determined during the computation, without user intervention, are emphasized. New iterative solution methods based on expanding explicitly chosen lter functions in terms of Chebyshev polynomials are presented. The properties of these methods are illustrated with applications to image restoration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of iterative methods for symmetric linear discrete ill-posed problems

The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted mini...

متن کامل

FGMRES for linear discrete ill-posed problems

GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...

متن کامل

Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective

In this paper we revisit the solution of ill-posed problems by preconditioned iterative methods from a Bayesian statistical inversion perspective. After a brief review of the most popular Krylov subspace iterative methods for the solution of linear discrete illposed problems and some basic statistics results, we analyze the statistical meaning of left and right preconditioners, as well as proje...

متن کامل

Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration

The BiCG and QMR methods are well-known Krylov subspace iterative methods for the solution of linear systems of equations with a large nonsymmetric, nonsingular matrix. However, little is known of the performance of these methods when they are applied to the computation of approximate solutions of linear systems of equations with a matrix of ill-determined rank. Such linear systems are known as...

متن کامل

Gmres , L - Curves , and Discrete Ill - Posed Problems ∗

The GMRES method is a popular iterative method for the solution of large linear systems of equations with a nonsymmetric nonsingular matrix. This paper discusses application of the GMRES method to the solution of large linear systems of equations that arise from the discretization of linear ill-posed problems. These linear systems are severely ill-conditioned and are referred to as discrete ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998